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TORSIONAL STIFFNESS OF THIN-WALLED SHELLS HAVING REINFORCING CORES AND
RECTANGULAR, TRIANGULAR, OR DIAMOND CROSS SECTION ‘

By HARVEY G. MCCOMS, Jr.

SUMMARY

A theoretical investigation km been made of the Saint-
Venani torsion of certnin composite bars. 17w8e bar8 are
composed of two mat&uk- onematerid inthformofa
thin-ud-sd c@ndricG? shell and the other material in theform
of a core whichfls t.h’ interior of the shell and h buied to it.

An approxim boundur.q-zalueproh?emh formulated on
a88umpti0nasimi?ar to th08e%?f the theoy of torsion of hoUow
thin-wulled 8he/Ls(Bredt theory). Tlui8bo?uwhy-du prob-
~emb solvedmac%?yfor a rectan@?ar cross section and approxi-
matdyfor 81%ndeT’ triangw?arand sknda diamond cro888ection8.
R& for the torsional sti$n~s comtants are presented
graphically.

INTRODUCTION

Certain airframe components such as wings, stabilizing
fins, control surfaces, and helicopter rotor blades have been
fabrimtid by employing a high-strength shell bonded to a
core made of some lightweight material. The shell is
formed in the external contour of the component and the
com iills the interior and acts ta stabilize the shell against
local buckling. Such a structure has been called a “foam-
fillcd shell” because the core is often a foamed-plastic
material. Metal honeycomb and balsa wood have also been
used for corm.

A large amount of literature exists on the problem of
torsion of homogeneous isotropic cylindrical bara, but rela-
tively little work has been done on the torsion of composite
cylindem. A few exact solutions to problems in the torsion
of composite sections are presented in references 1 and 2.
Solutions for other cross-sectional configurations are desir-
~ble, and the methods used in references 1 and 2 do not
appear to be applicable for sections of the type considered
in the present report.

In this report an approximate boundary-value problem
for the torsion of foam-fled shells. is formulated. The
fact that the thickness of the outer shell is small relative to
overall dimensions of the cross section allows an approxima-
tion similar to that of the Bredt theory for the t’orsion of
hollow thin-walled shells with free warping. (See ref. 3,
pp. 298–302.) I?or a rectangular cross section, an exact
solution to the approximate boundary-value problem is
obtained. For slender triangular and slender diamond cross

sections, approximate solutions whioh appear to be reasonably
accurate are obtained. Finally, the results are compared
with results based on an elementary concept of the torsional
stiihms of foam-filled shells.
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arbitrary constants
cross-sectional dimensions (see fig. 4)
curve deii.ningboundary of a region
arbitrary functions
shear modnli of shell and oore materials,

respectively
Fourier coefficient (see eq. (21))
torsional stiffness oonstants

arbitrary-oonstants
moment on cross section
index in equations (37) and (61),
summation index
region .
direction tangential to a curve in oross

section
thiokness of shell wall
dimension of oross section (see fig. 4)’
total complementary energy per unit

length

coordinates along X-, Y-, and Zaxes,
rwpectively

arbitrary constants
shear strain

angle of twist per unit length
eigenvah.w ,.~

direction normal to a curve in cross
section

nondimensional coordinates in x- and
y-directions, respectively

shear stress
stress function
constant of integration ‘“

I Supersedes NAOA T~ NoteW49by HaweY G. M@omb, Jr., 1953.
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Subscripts:
1, 2 refer to regions and curves indicated in

figure 1
Rime denotes differentiation with respect to the indicated

variable.
BASICEQUATIONS . . .

In this section equations of elasticity are ~tablished for
the Saint.Venant torsion of certnin cylindrical bars composed
of two materials. These equations are then particularized
to the case of foam-illled thin-waUed shells. Finally, the
energy approach to the torsion of foam-filled shells is &-
cussed briefly.

. TQF@ION OF CYUNDRICALlL4RSCONSISTING OF TWO MATERL4U

Consider a long cylindrical bar composed of two.isotropic
materials in which one material surrounds the other. A
cross section of such a bar is shown in figure 1. For torsion
with free warping, the stressesare given in terms of a stress
function + as follows:

where {=1 or 2. Each function @f
equation

v%t=-2Gie

(1)

must satisfy Poiswn’s

(2)

in its corresponding region R,.
The boundary conditions can be expressed in terms of the

stress fupction by consideration of the components of shear
stress normal and tangential to a curve in the.cross section.
These components are, respectively,

‘s’=% J

I?mmm l.—Cross motion of uylindricel bar composed of two materials.

,,

The condition that the internal boundary of the section must
be free of stress is o%tainedby i.ntcgrating the first of equa-
tions (3) along cl:

Alcl=Ql=Constant (4)

The conditions which must be satisfied at tho intorfaco Cz
can be seen by referring to figuie- 2. The tangential strain
must be continuous across CS. In terms of the stress func-
tion, this condition is

1 a+, =~ a42——.- Q, avc, (22%=, (6)

Lastly, the shearing-stress component normal to 0, must be
continuous acros9 C9,or

Wlmn equation (6)
results:

AIC,=!3110*+QC

The problem is to find stressfunctions+,

(())

.

following equation

(7)

and A WhiChsatisfy
equation (2) in their r~ective domains and the boundwy
conditions (eqs. (4), (5), and (7)).

The total moment on the cross section is given by

M=% SS (T##–T=$y)dR,f-l Ei
(8)

This equation can be written in tams of @ as follows:

v“

/’
,/’ y-

./ 1/

FIGURE2.-Shearing strwws on an
the materials. Supermript.5 on
indioded in figure 1.

(9)

element at the intcrfnao between
symbols correspond to regions
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lhtegmting by parts and making use of equations (4) and (7)
give9

JM=& Q, ~, (–x dy+y dx)+&JJ’24i dR, (lo)

The streswaand moment on the cross section are independent
of il; therefore, these constants may be chosen arbitmrily.
l?or convenience, m and $Lare both taken to be zero so that
the expression for the moment is analogous to that for the
torsion of a uniform cross section; that is, moment equals
twice the volume under the d diagram.

TORSION OF FOAM--D SHEIJ.9

The equations of elsstici~ are particularized for the case of
a cylinder made of a thin-walled shell of one materiaJfled
with a core of another, that is, a foam-filled shell. . In figure
3 a general cross section for such a cylinder is illustrated.
Beormse the thickness of the shell wall is small compared
with the overall dmensions of the cross section, the stress
in the wall can be assumed to be uniformly distributed over
the thickness. This stress is equal to the normal derivative
and is given by

(11)

where ~,~1represents the stress in the shell wall. With the
use of equation (11), equations (4), (5), and (7) can now be
written ns

411C1=0 (12)
nnd

(13)

Let the curve c in figure 3 be the middle surface of the
shell wall. If the shell wall is assumed to be concentrated
at ita middle surface, then O can be thought of as reprwen&
ing the interface, middle surface, and outer boundary of the
wall. Consider R as being the region bounded by C. The
problem can now be formulated as follows. Find a function
+ satisfying the equation.

in R and the equation

(15)

cl-

_—— ——

FmmFI 3.—CrossSeotionof a compositi thin-walledoylindrkal shell.

along C. The moment on the oross section is equal to
twice the volume under the + diagram, or ‘

iW=2 SSddxqiyE
ENERGY APPROACH

Approximate solutions for the torsion

(16)-

of foam-fled shells
can be obtained by the energy method. The complementary
energy for such a body is the sum of the stress energy of the
core, the stress energy of the shell wall, and the negative
of the work done by the external moment acting thrmgh
the angle of twist. For the composite cross section shown
in figure 3 the complementary energy per unit length is

where r. and ~r, represent the shear stresses in the core
and ~a represents the shear shws in the shell wall. In
terms of the stress function +, ~ becomes

where the subscript on @ denote the partial derivative with
respect to the indicated variable.

When the variation of Uis equated to zero and integrations
by parts are carried out, the following equation is obtained:

(19)

It is seen that, if w is arbitrary in R and along C’,equations
(14) and (15) must be valid.

The torsion of a foam-fled shell is analogous to the
problem of the deflection of a membrane stretched over the
region R, subjected to lateral pressure, and supported ale@
the curve (? by infinitely many springswhich are conshained
to distort only in the direction normal to the plane of R.
Some discussion of approximate solutions of problems of this
type is given in reference 4.

SOLUTIONOF SPECIFICPROBLEMS

In this part of the report an exact solution for a rectangular
cross section is obtained by satisfying equations (14) and
(15). For the slender triangular and slender diamond cross
sections, exact solutions do not appear feasible, and ap
proximate solutions are obtained instead by using equation
(18). Two approximate procedures are utilized in each
case; the fit is the Rayle”@-Ritz method and tie second is
a more genersl variational procedure, herein called the
“variational method.” This latter procedure is applied,
for the most part, in cases where the Rayleigh-Ritz method
becomes cumbersome. These two approximate methods
may be applicable to other sections of. practical interest for
which solutions are not available.
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The notation for a rectangular cross section is shown in
figure 4 (a). The thiclmes-sof the shell wall is assumed to
be constant. The problem is to find a function @ which
satidica equation (14) within the rectangle and the following
boundary conditions:

(20a)

(20b)

The function @ is, of cmrse, symmetric about both the X-
rmd Y-axes. The symme@ condition about the X-axis is
satisfied when @ is taken in the form

@=nYJL(z) cog Ml (21)

Y

I I
r———— -————

-I- ~-1

_~ ‘ I -
x

L . __–_=J L—— ——
I I

x

I

Y 4.

x

(a) Rectangularmm section.
(b) TriQ#ar cros9Seotion.
(c) Diamond moss section.

Frc+mm4—Notation used in analysis.

where the functions cos M form an orthogonal sot. The
righkhand side of equation (14) can be expan~ed in a Fourior
series of the functions cos ~~ in the intervnl —bsys b, and
this expansion yields

Substituting the ssmuned solution (eq. (21)) into equation
(22) and equating coeflkients of like termsgives the following
ordinary diilerential equation. for h,(z):

The solution to equation (23) is

(24)

The constants kl= vanish because of symmetry. The con-
stants kj. and the eigenvshms L cm be found from the
boundary condition at z=a and y=b, respectively, Con-
sider first the condition at V= b. The substitution of equation
(21) into equation (20b) fields

Therefore, the eigenvalues are given by

K
‘an ‘=b=iJ

.

(26)

(26)

At z=a, the substitution of equation (21) into equation (20a)
yiekls

. “ k2. cosh lx
[

4@ Sill hab
‘“L ‘* “a=-m

a+ ~ 1L M+sinLbCOSM)
(27)

Therefore,

(28)
Consequently, the stress function is

The moment on the cross section is given by the formula

SSi’M=8 a b@lizdy (30)
00
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TORSION OF TEII?-WL4LIJ3D

The torsional stiflnew cm be expressed in terms of either
or Q2
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The torsional stiffness constants J1 and Jz are obtained upon
substituting equation (29) into equation (30) and carrying
out the indicated integration. When the results are expressed
in the form of equation (31), it is seen that

Jl=4ch’tEA
JS=2Ch3A }

(32)

where

[

b K sinh La
1‘i &b&b sinh &a+K cosh W) 1 (33)

The series A converges very rapidly. For various values of
K, the eigenvrducs are easily located from the intersections
of tho hyperbola K/A,b and the curves tan Axb as indicated
in figure 5. Plots of JI and Jz against the cross-section aspect
ratio t@ for various values of K are presented in figure 6.

As the stifhws of the shell-wall material vanishes, K

(2n+1)T. It ~ beapproaches itity and A.b approached z

shown that the limiting value of J2 is the solution obtained
by the theory of elasticity for the torsion of a homogeneous
rectangular cross section as given in reference 3 (p. 278).

AEthe stiilneasof the core material vanishes, K approaches
zero and the solution should approach that of the Bredt
theory for the torsion of hollow thin-walled shells with free
warping. As K npproachw zero, Lb approaohea mr. It is
obvious, then, that all the terms in A vanish for which n>O.
Investigation of the term for which n=O shows that J1 does

o

approach the result given by the Bredt theory which is

(34)

w-hereAOis the area enclosed by the median line of the shell
wall.

SLENDER TRIANGULAR CROS13 SECTION

If the ener~ approach is used, two approximate solutions
are obtained for a cross section in the shape of a slender
isosceles triangle with a constant-thickness shell wall as
illustrated in figure 4 (b). One solution is obtained by the
Rayleigh-Ritz method and another solution is found by
utilizing the calculus of variations and the boundary-layer
technique of reference 5.

Iiayleigh-Eitz method,-k terms of nondimensional co-
ordinates, the complementary ener~ (eq. (18)) can be
written for the triangle as follows:

~= QJ7

HK ‘d JT (35)
o

where

~ote that the equation of the sloping side of the triangle in
nondimensional coordinate is simply T=.f.

The stress function @ must be an even function through
the thickness, and for slender sections it is usually sufficient
to assume a parabolic variation in the thickness direction.

LI ..ilb./

Anb
I

——

FIQUW 5.—Determination of eigenvaluea in exact solution for rectangular cross seotion.
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FIGURD6.—Torsional stiffness constants for a composite thin-walled cylindrical shell of rectangular oroea seotion,
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For thick sections, however, it maybe necessary to include
additional terms in the thickness direction to get satisfactory
wmracy. Suppwe now that $ ia awwed to be a poly-
nomial

When equation (36) is substituted into equation (35) and ~
is minimized with respect to the parameters % and B, the
following r+2 equations remdt:

}

-&G.@ (37)

where 05 m,s r.

Solution of the system of simultaneous equations (37)
-yieldsas and 13. From equation (16), the moment is

(38)

The stiffness can be written in the form of equation (31) and
J, and Jt are easily calculated. The results are

J
..

When K is large compared with unity a large number of
equations may be required for reasonable accuracy. An
approach which avoids this difficulty is developed in the
succeeding section.

Variational method.—Ins&wi of sssuming for @ the poly-
nomial of equation (36), suppose arbitrary functions of ~ are
nllowed to remain and # is taken to be of the form

i=m+Vw) (40)

When equation (40) is substituted into equation (35) and
the variation of ?? with respect to admissible variations in
j and g is equated to zero, two simultaneous ordinary dii3?er-
cntial equations for the functions j and g are obtained w
follows:

(41)

and the following boundary conditions aro obtained:

(’f’+:’’),+=o
(w#5%’)*=O

(42a)

@2b)

(#+Kf)&,=o (42c)

(w’+’&)&l=o (42d)

where the primes denote derivatives with respect to &
The diilerential equations (41) are liucar with variable

cmiiicients, and it appears to be a dii3icult tssk to find an
exact solution to the system. For the case of slender cross
sections, however, an approximate solution is possible by
utilizing the “boundary layer” technique disc~ed in refer-
ence 5. Notice that the differentiated terms in equations
(41) are multiplied by .2, a quantity which for slender cross
sections is small compared with unity. Differential equa-
tions having the most highly differentiated terms multiplied
by a small quantity are characteristic of the type of bonnd-
ary-layer problems considered in reference 5.

Suppose, iuitislly, thatj and g are slowly varying functions
throughout the region OSt ~ 1. The term “slowly varying”
is intended to mean that the maximum vahm of the func-
tionsj and g and their derivative which appear in equations
(41) are of the same order of magnitude. Then, as long m
K is at least of the order of unity, the terms in equations
(41) which contain # have little influence on the solution.
Consequently, a good approximation to a particular solution
is obtained by ignoring the terms in equations (41) which
contain 2.

When this procedure is carried out, it is found that the
approximate particular solution satisfies the boundary con-
ditions at f=O but does not satisfy the boundary conditions
at ~= 1. It can be concluded that the required solution is
such that the functions j and g are not slowly varying every-
where in the region OSt51. Somewhere the derivatives
-which appear in equations (41) must take on values which
are of the order of e-g so that the terms containing F cm
have an appreciable influence on the solution.

It is sssumed that the region where the derivativ~ of
fandg have valuea of the order of e-’ is confined to a so-called
boundary layer in the neighborhood of t= 1. On the bssis
of this assumption, the particular solution alone is a good
approximation to the exact solution away from f= 1. Then,
by focusing attention on the boundary layer close to ~= 1,
it is possible to obtain an approximate homogeneous solution
to equations (41) which modik the particular solution in
such a manner that the boundary conditions at ~= 1 can be
satisfied.

It is convenient to get a particular solution 89 a power
series in e instead of ib~oring completely the 2 terms in
equations (41). Assume that a solution can be expressed
in the form
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where the subscript P denotes a particular solution. When
equations (43) are substituted into equations (41) and
coeilicients of like powers of e are equated, pairs of simul-
trmeous equations are obtained for the “ccdlicients in the
power series For example, when the coeflicieuts of the
zeroeth power of c are equated there remdts

When coefhcients of the first power of ● are equated the
res.dt is

When coefficients of the second power of ~ are equated the
following equations resdt:

Similar equations are obtained when coefficients of higher
powe~ of c are equated.

Solution of equations (44) results in the following expres-
sions for jP and gp:

g.=–@W(l+12+ . ..) J
Coefficients of the odd powers of e vanish. This particular
solution satisfies the bound~ conditions at $=0 but not
at ~=1.

A homogeneous solution can be obtained which modifies
the particular solution in the vicini~ of ~=1 in such a way
that the boundary cmditions at :=1 can be satisfied. In
order to determine the homogeneous solution it is convenient
to put equations (41) into a form in which, in ~e neighbor-
hood of $=1, the terms containing derivatives Me of the
same order of magnitude ss the remtig terms. Such a
conversion is provided by the coordinate tmxosformation

E=l+cz (46)

When the transformation (eq. (46)) is introduced into
equations (41) and the righ~hand sides are set equaI to zero,

the following equations are obtained:

I(l+&!)f’]’# [(l+cii)’g’]’-K,u h+(l+@2g]=o

; [(l+@f’]’+; [(l+&g’]’–.KP [(l+W+

1

(47)

(l+md-; (l+iyg=o

where the primes now denote differentiation with respect
to ~.

The homogeneous solution can be expanded in powers of c

A?G=&O@ +&l@ +HH2@ + . . .

}

(48)
&(2)=&u@ +4iY1@+&2@+ . . .

where the subscript H denoti a homogeneous solution. If
these expressionsare substituted into equations (47) rmd the
coefficients of like powem of e are equated, systems of
ordinary d.inferentialequations are obtained. For the terms
fm ~d gm, a set of homogeneous equations is obtained:

-fro”+ &m’’–K~ (h+gm)=o

}

(49)
1
~jm”+ :g.m”–& (&o+gzio)– &ro=O

For the terms jm and g=, the following nonhomogeneous
equations axe obtained:

fm’’+&’’-Ky LLn+gm)=– (’i&o’)’–(k’)’+ 1
W&no

+x’++” ‘Kk(f.m+%)– :gRI=– @io’) ‘-

~gm’)’+2K~; (f~,+2gm) +4igm I

(50)

Additional sets of nonhomogeneous equations would result
for the coefficients of higher order terms.

It is found that neglecting terms of the order of e in equa-
tions (48) is equivalent to neglecting terms only of the order
of 8 in the final result for the totional stiflness constant.%
Therefore, a final result which includ~ all terms li.mmrin
~can be obtained by solving only equations (49) and dropping
all higher order terms in the homogeneous solution, Solu-
tions to equations (49) are of the form

&=Ae~

gm%=l%l~
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Substitution of these functions into equations (49) yields

A(x’–KP)+B
&K”)=O

‘6-K’)+BC-K’-:)=” }

(51)

This system of equations has a solution only if the deter-
minant of the coe5cients vanishes. When the determinant
is set equal to zero rLbiquadratic equation for h is obtained.
The solution to the biquadratic equation is

h=& 15+6KW + J(15+6KP)’–60KY
2

(52)

Th~ homogeneous solution must vanish as the absolute
magnitude of ~ increases, and since ~ is always negative or
zero, only the two positive roots for h are required.

From the first of equations (51) the .B coefficients can be
written in terms of the A coefficients

(53)

When the ~ coordinate is transformed to the.$ coordinate and
terms of the order of & are dropped, an approximate general
solution to equations (41) is obtained

This solution satisfiea the boundary conditions at f=O.
The boundary conditions at f= 1 are used to determine
Al and Az.

When equations (54) are used, the stress function #
becomes

where

z.=~
Q&b’

and where terms of the order of &are dropped. The moment
is calctdated by substituting @ into equation (16) and per-
forming the integration. The results for the torsional
stifbss constants JI and J2 are

where

(56)

(57)

.and where terms of the order of # have been dropped. It
is seen now that in calculating the arbitrary constants ~.,
terms of the order of e may be neglected. When equations
(54) are substituted into the boundary conditions (eqs.
(42c) and (42d)) the following expressionsfor& are obtained
after dropping terms of the order of c:

c)
%K x+2K

z,=
(x,+ ~(15+6Kp)’–60Kp

c)
%K &’-2K

z,=–
@2+mw5+6Kp) 2–60Kp

(.-

In the limiting casew-hereKapproaches zero the boundmy-
layer technique becomes invalid. Therefore, the solution
camot be expected to approach the proper result for a hollow
thin-walled shell. When K approaches infinity, an approx-
imate solution for a solid cross section is obtained; and r
is given by

J
lim r=l–4 ~ ~ (59)
K+m

SLENDEZDIAMOND CROSS SECTION

Eayleigh-Eitz method.—For the slender diamond cross
section the notation is shown in figure 4 (c). The comple-
mentary energy becomes

Substitution of the polynomial (eq. (36)) into equation (60)
and minimization with respect to a= and /3 yields the F+2
equations

(61)

where 05mSr.
The moment and the torsional stiffnes4 constants J1 and

Ja are found by utilizing equation (16). The expressions
for the torsional stH&ss constants turn out to be precisely
the same w for the triangular cross section given in equations
(39). Of course, for the diamond cross section, amand P are
obtained from equations (61).

Variational method.—Through the use of the calculus of
variations and expression (4o) ford, the di.ilerentialequations
(41) are found to be valid also for the diamond cross section.
The boundary equations at ~=0 (eqs. (42a) and (42b)) also
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hold for the diamond cross section.
tions at E= 1, however, are now giveD

fq:.l=o

.g’I?d=o,}

The boundary condi-
by

(62)

where the primes denote differentiation with respect to &
The boundaqdayer technique yields a general solution of

the same form as that obtained for the triangle. However,
now it is fou$d that neglecting terms of the order of e in the
homogeneous solution (eqs. (48)) is equivalent to neglecting
terms only of the order of E’in the iinal expr-ions for the
torsionrdstiffnessconstants. Consequently, for the diamond
cross section a result which includes all terms of the order
of & can be obtained by solving equations (49) and dropping
all higher order terms in the homogeneous solution. It is
consistent, now, to keep the d term in the particular solution.

The approximate general solution to equations (41) for
the diamond cross section becomes

The arbitrary constants A, and A2 are deteryin ed by sub-
stituting equations (63) into equations (62).

The stress function becomes

.

(64)

If this expression for@ is substituted into equation (16) and
integrated, the mommt can be calculated. The torsional
stiflness constants become

J,=$ 2KI’*

Js=c~ I’*
}

(65)

where

(– ‘+1)+62%(.X2%,) ’66)
6r*=l+&+ ~ K2P2+KP

When equations (63) are substituted into the boundary
conditions (eqs. (62)) and terms of the order of 2 are
neglected, the following expressions are obtained for the
arbitrary constants:

~ =61+KP 2h22+3Kp

‘ ~ A,31(15+6KP)2–60KP
(67)

,,

III the case where K approaches tinity rm approximate
solution for a solid sectio~ ‘is obtained, and I’* is given by

h r*=l–3& (68)
K+ m

RESULTSANDDISCUSSION

PRE3ENTA’T20N OF RRSUL~

The results of the calculations outlined in this report are
presented in figures 6, 7, and 8. These figures show plots
of the torsional stiiTness constants against cross-section
aspect ratio for various values of the parameter K. The
torsional stiffness can be expressed either in terms of the
shear modulus of the core material or the shear modulus
of the shell-wall material. The torsional stiffness constant
associated with the shear modulus of the core material Ji
is plotted in parts (a) of figures 6, 7, and 8, whereas the
constant associated with the shear modulus of the shell-wall
material J1 is plotted in.parts (b) of these figures.

In figure 6 are shown the rcs-dts of the exact solution of
the di.flerentialequation (14) with the boundary conditions
(20) for a rectangular cross section. In figures 7 and 8 nre
shown the results of the approximate solutions (the Rmyleigh-
Ritz method and the variational method in conjunction
with the boundary-layer technique) for the triangular and
diamond cross sections. A five ‘ parameter polynomial
was used in the Rayleigh-Ritz method.

ACCURACYOPAPPEO~ATEM~HODS

Solutions by the Rayleigh-Ritz and variational methods
also wexe obtained for the rectangular cross section. A
comparison of these results with the erect solution provides
an indication of the accuracy of the approximate methods,

A polynomial with only three parameters was used for
the Rayleigh-Ritz method in this comparison. The results
showed that for all aspect ratios and for K leas than about
unity the stiflness given by Rayleigh-Ritz method k less
than 3 percent lower than the exact stiffness. It is bclioved
that the five-parameter Rayleigh-Ritz method used for the
triangular and diamond cross sections should yield slightly
more accurate results. Of course the accuracy of tho
Rayleigh-Ritz method can be improved for large values of
K by including more terms in the polynomial for + How-
ever, the number of simultaneous equations which musL bo
solved increases with the number of unknown parameters.

The stiflness cxdculated by the variational method for
the rectangular cross section was less than 1 percent in mror
for values of K greater than about unity and the aspcch
ratio @ less than about %. The boundary-layer techniquo
yielded a slightly more accurate solution to the diflcmntial
equations obttied for the rectangular cross section than for
equations (41) which arise for the triangular and diamond
cross sections. Thus the results of the variational method
for the triangular and diamond cross sections are probably
not quite as accurate as for the rectangular cross section.
It appears that for slender cross sections (small values of
tO/c)the variational method is more accurate for large
values of K and the Rayleigh-Ritz method is more accurnto
for small values of K. . .
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In figures 7 and S the solid curves are results of the five-
parameter Rayleigh-Ritz method, and the dashed curves
show results of the variational method. The Rayleigh-
Ritz method certainly leads to a lower bound for the torsional
stiffhess. The variational approach also leads to a lower
bound provided the bound~-layer technique yields a
sufhciently accurate solution to equations (41). From the
results on the rectangular cross section it appears reasonable
to assume that for 1~= 1 the variational method probably
gives CLlower bound. Therefore, for any particular case
where I<= 1, the higher of the two values of torsional st~-
ness calculated by the two appro.simatemethods is the more
nccurate.

I?EBfARRSONANELEMENTARYCALCULATION

It is conceivable that a fist approximation to the stiff-
ness of a foam-filled shell could be made simply by adding
the torsional stiflness of the core alone to that of the shell
alone and neglecting the stiffening effect which results from
bonding the core and shell together. Calculations were
made by this elementary proceduxe and the results are shown

JL .,@ .
in figure 9. The ratio — 1s the ratio of J1 as calculated

Jl,th
by the elementary procedure (neglecting the bonding effect)
to Jl m calculated by the theory of this report. It is seen
that for the rectangular cross section the result of the ele-
mentary calculation is never more than 5 percent lower
than the exact solution. For the triangular and diamond
cross sections, however, the elementary procedure does

.

not lead to such good remdts, and the discrepancy can be
as much as 25 percent.

CONCLUDINGREMARKS

An approximate boundary%lue problem is setup for the
Saint-Venant torsion of cylindrical thin-walled shells bonded
to a core which fills the interior of the shell and which is
made of a material ditlerent from that of the shell wall.
Solutions for the tomional stillness are obtained for three
particular cross-sectional shapes-an exact solution to the
boundary-value problem for rectangukw cross sections and
approximate solutions for slender triangular and slender
diamond cross sections. The approximate solutions are ob-
tained by the use of two energy procedures. These methods
may be applicable to other cross sections of practical interest.
The choice of approximate method for any particular prob-
lem depends on the range of parametem involved.

The stiflness obtained by the simple procedure of adding
together the individual stiffnessesof the core and the hollow
shell (neglecting the effect of the bond) yields results less
than five percent low for rectangular cross sections. For
slender triangular and diamond cross sections this elementary
appro.simation is generally not so good and in certain cases
it yields rewdts which are considerably low.

LANGLEYAERONAUTICALLAROR~TORY,
Ff~TIoNti ADVISORYCommm EE FOR&IRON~UTICS,

LANGLEYlhELD,VA., June 7, 1966.
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